\(\int \frac {x^m (a+b \arctan (c x))}{(d+e x^2)^{5/2}} \, dx\) [1238]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [F(-1)]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {a x^{1+m} \operatorname {Hypergeometric2F1}\left (1,\frac {1}{2} (-2+m),\frac {3+m}{2},-\frac {e x^2}{d}\right )}{d (1+m) \left (d+e x^2\right )^{3/2}}+b \text {Int}\left (\frac {x^m \arctan (c x)}{\left (d+e x^2\right )^{5/2}},x\right ) \]

[Out]

a*x^(1+m)*hypergeom([1, -1+1/2*m],[3/2+1/2*m],-e*x^2/d)/d/(1+m)/(e*x^2+d)^(3/2)+b*Unintegrable(x^m*arctan(c*x)
/(e*x^2+d)^(5/2),x)

Rubi [N/A]

Not integrable

Time = 0.12 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx \]

[In]

Int[(x^m*(a + b*ArcTan[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

(a*x^(1 + m)*Sqrt[1 + (e*x^2)/d]*Hypergeometric2F1[5/2, (1 + m)/2, (3 + m)/2, -((e*x^2)/d)])/(d^2*(1 + m)*Sqrt
[d + e*x^2]) + b*Defer[Int][(x^m*ArcTan[c*x])/(d + e*x^2)^(5/2), x]

Rubi steps \begin{align*} \text {integral}& = a \int \frac {x^m}{\left (d+e x^2\right )^{5/2}} \, dx+b \int \frac {x^m \arctan (c x)}{\left (d+e x^2\right )^{5/2}} \, dx \\ & = b \int \frac {x^m \arctan (c x)}{\left (d+e x^2\right )^{5/2}} \, dx+\frac {\left (a \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {x^m}{\left (1+\frac {e x^2}{d}\right )^{5/2}} \, dx}{d^2 \sqrt {d+e x^2}} \\ & = \frac {a x^{1+m} \sqrt {1+\frac {e x^2}{d}} \operatorname {Hypergeometric2F1}\left (\frac {5}{2},\frac {1+m}{2},\frac {3+m}{2},-\frac {e x^2}{d}\right )}{d^2 (1+m) \sqrt {d+e x^2}}+b \int \frac {x^m \arctan (c x)}{\left (d+e x^2\right )^{5/2}} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 5.76 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx \]

[In]

Integrate[(x^m*(a + b*ArcTan[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

Integrate[(x^m*(a + b*ArcTan[c*x]))/(d + e*x^2)^(5/2), x]

Maple [N/A] (verified)

Not integrable

Time = 0.58 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.91

\[\int \frac {x^{m} \left (a +b \arctan \left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}d x\]

[In]

int(x^m*(a+b*arctan(c*x))/(e*x^2+d)^(5/2),x)

[Out]

int(x^m*(a+b*arctan(c*x))/(e*x^2+d)^(5/2),x)

Fricas [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 54, normalized size of antiderivative = 2.35 \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x^{m}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x^m*(a+b*arctan(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x^2 + d)*(b*arctan(c*x) + a)*x^m/(e^3*x^6 + 3*d*e^2*x^4 + 3*d^2*e*x^2 + d^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(x**m*(a+b*atan(c*x))/(e*x**2+d)**(5/2),x)

[Out]

Timed out

Maxima [N/A]

Not integrable

Time = 0.40 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x^{m}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x^m*(a+b*arctan(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*arctan(c*x) + a)*x^m/(e*x^2 + d)^(5/2), x)

Giac [N/A]

Not integrable

Time = 0.49 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \arctan \left (c x\right ) + a\right )} x^{m}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x^m*(a+b*arctan(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arctan(c*x) + a)*x^m/(e*x^2 + d)^(5/2), x)

Mupad [N/A]

Not integrable

Time = 0.94 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00 \[ \int \frac {x^m (a+b \arctan (c x))}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^m\,\left (a+b\,\mathrm {atan}\left (c\,x\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

[In]

int((x^m*(a + b*atan(c*x)))/(d + e*x^2)^(5/2),x)

[Out]

int((x^m*(a + b*atan(c*x)))/(d + e*x^2)^(5/2), x)